Classical Field Theory on Lie Algebroids: Multisymplectic Formalism
نویسنده
چکیده
The jet formalism for Classical Field theories is extended to the setting of Lie algebroids. We define the analog of the concept of jet of a section of a bundle and we study some of the geometric structures of the jet manifold. When a Lagrangian function is given, we find the equations of motion in terms of a Cartan form canonically associated to the Lagrangian. The Hamiltonian formalism is also extended to this setting and we find the relation between the solutions of both formalism. When the first Lie algebroid is a tangent bundle we give a variational description of the equations of motion. In addition to the standard case, our formalism includes as particular examples the case of systems with symmetry (covariant Euler-Poincaré and Lagrange Poincaré cases), variational problems for holomorphic maps, Sigma models or ChernSimons theories. One of the advantages of our theory is that it is based in the existence of a multisymplectic form on a Lie algebroid.
منابع مشابه
ar X iv : m at h / 04 10 55 1 v 2 [ m at h . D G ] 1 6 N ov 2 00 4 CLASSICAL FIELD THEORY ON LIE ALGEBROIDS : VARIATIONAL ASPECTS
The variational formalism for classical field theories is extended to the setting of Lie algebroids. Given a Lagrangian function we study the problem of finding critical points of the action functional when we restrict the fields to be morphisms of Lie algebroids. In addition to the standard case, our formalism includes as particular examples the case of systems with symmetry (covariant Euler-P...
متن کاملar X iv : m at h / 04 10 55 1 v 1 [ m at h . D G ] 2 6 O ct 2 00 4 CLASSICAL FIELD THEORY ON LIE ALGEBROIDS : VARIATIONAL ASPECTS
The variational formalism for classical field theories is extended to the setting of Lie algebroids. Given a Lagrangian function we study the problem of finding critical points of the action functional when we restrict the fields to be morphisms of Lie algebroids. In addition to the standard case, our formalism includes as particular examples the case of systems with symmetry (covariant Euler-P...
متن کاملDe Donder-weyl Equations and Multisymplectic Geometry
Multisymplectic geometry is an adequate formalism to geometrically describe first order classical field theories. The De Donder-Weyl equations are treated in the framework of multisymplectic geometry, solutions are identified as integral mani-folds of Hamiltonean multivectorfields. In contrast to mechanics, solutions cannot be described by points in the multi-symplectic phase space. Foliations ...
متن کاملA Survey of Lagrangian Mechanics and Control on Lie Algebroids and Groupoids
In this survey, we present a geometric description of Lagrangian and Hamiltonian Mechanics on Lie algebroids. The flexibility of the Lie algebroid formalism allows us to analyze systems subject to nonholonomic constraints, mechanical control systems, Discrete Mechanics and extensions to Classical Field Theory within a single framework. Various examples along the discussion illustrate the soundn...
متن کاملLie Algebroids in Classical Mechanics and Optimal Control
We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.
متن کامل